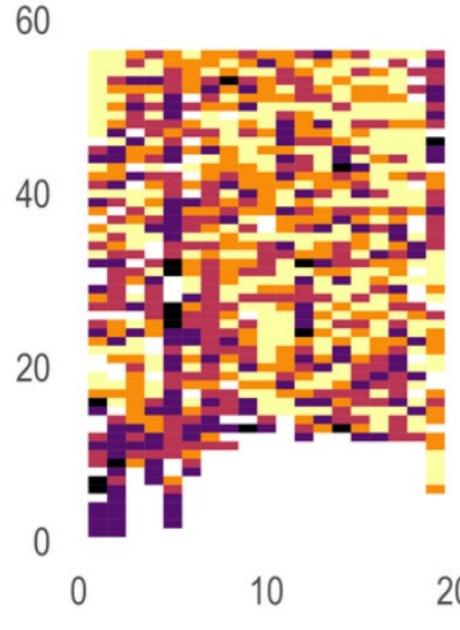
The Risks and Rewards of a Seed-Based Strategy for the Midwest Hazelnut Industry

Benefits of Growing Seed-Based Plants (Seedlings)

- Relatively cheap and easy to grow in a nursery
- Genetic diversity provides resilience and manages risk
- Saving seed from your "best" plants is empowering
 - Low capital cost
 - No fancy technology or tools required
 - Strong culture of seed-saving

But Does It Work?

Growing plants from seeds is relatively cheap and easy compared to vegetative propagation


Genetic diversity provides resilience and manages risk

The risk of catastrophic loss in genetically identical clonal orchards is real, but "diversity" alone does not provide resilience.

BBM eliminated nut yield in 2020 in more than 50% of the plants in one of the Midwest's most diverse orchards. In other words, diversity alone isn't enough.

2023 West Madison JPT

Seedlings

Ave kernel yield: 404 g/plant Yield range: 43-745g/plant

Ave kernel wt: 0.51g

Kernel wt range: 0.26-.79g

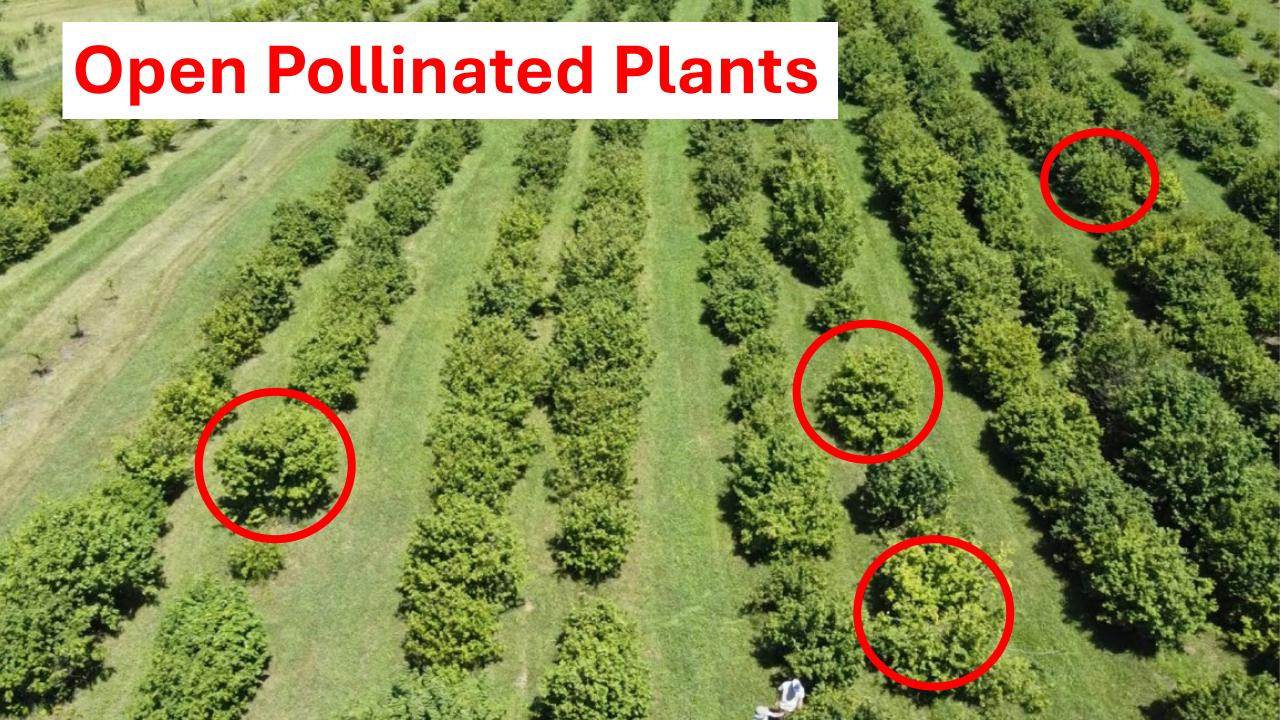
Northern Blais: 1466 g/plant

Northern Blais range: 1096-2041g/plant

70-50 Problem
70% of yield
comes from 50%
of the plants

As is kerne	l yield											
	Α	В	С	D	E	F	G	Н	I	J	K	L
1	745	649	1097	1305		1247	7	1158	6	734	360	836
2	171	465		1762	5	1330	2	23			449	432
3	293	588	53	144	8	44	1	458		114		2041
4	413	142	195	342	715	899	0	226		192	249	622
5	542	1097	386	979	386	1496		1757		675	184	383
6	183	288	120	175	312	1		464		565	306	1024
7	200	1218	707	490	321	881	18	648	5	1989	10	68
8	383	112		417	24	67	149	499	103	650		86
9	411	90	569	116	149	12	10	433	237	540	67	210
10	552	610		199				283	1207			193
11	718	341	118	2	631		158		219		136	172
12	715	644	85	631	6	8		1	1638			6
13	108		1		5	79	160	529	291	447		
14	360		105	225		442		167	670	42	114	
15	153	16		793			84	2	627	4	1982	
16	700			593			123	7	207	431	477	197
17	264	44		582	40	265	1714	651	6	6	280	241
18	43	252		163	111	440		270	206	756	138	
19	766	215	153	188	106	233	546		7		400	
20	676	11		11	1095		1050	18	3		468	
21	145	171	660		1800	7	396	222				
22	263	210	407	17			13			7		
23	611		235	1	284		658	8		6		
24	406	11	828		301		15					
25	164	14	150		3		284	3				
26	541		916	1227	806		675	514				
27	365											
28	426					922	94					
29	170											
30	567											
31	536											
32	218											
33	534											

In-Shell Nut Size Distribution 35.0% **2**019 Total 30.0% - 2020 Total -2021 Total 25.0% **-** 2023 Total 20.0% **-** 2022 Total 15.0% 10.0% 5.0% 0.0% 10 11 12 13 14 15 16 16+ 9 In-Shell Size (mm)


	lbs in- shell	in-shell lbs/ac	lbs kernel/ac
LaCrosse `19	535	461	152
LaCrosse `20	810	698	230
LaCrosse `21	1252	1079	356
LaCrosse '22	1050	905	299
LaCrosse '23	1728	1490	492

The Challenges of A Seed-Based Approach

- How do we reach minimum average performance targets?
- What is the maximum amount of variation that is acceptable for given traits?
- What benefit does that variation provide and how do we know it provides it?

Half-Sibling OP Plants - Challenges

- We don't know a plant is "best" unless grown in multiple locations
- We don't know the performance of the offspring from a "best" plant because those plants have never existed before
- Open pollinated half-sibs will be different every year due to different fathers and random chance of recombination
- No way to guarantee minimum performance or maximum variation targets

Full-Sibling Plants - Challenges

- We don't know the parents are "best" until they've been grown at multiple locations in replicate (16+ year process)
- No way to guarantee minimum performance or maximum variation targets until the offspring have been grown at multiple locations (add another 8-10 years)
- Tools to aid parent selection (genomic prediction, markers) and minimize numbers of families to evaluate

No One Can Do This Alone

Recommendations - Breeders

- Focus on saving seed from plants validated in replicate at multiple locations
- Utilize controlled crosses (full-sibs) to improve probabilities of reaching offspring targets
- If possible, genotype your plantings
- Continue looking for the top individual plants (a diverse mix of clones may be just as good as a mix of seedlings)

Recommendations - Growers

- Determine a context and reason for growing your plants
 - Homesteader
 - Land Steward
 - Botanist
 - Commercial Grower
- Grow progeny families to aid breeders in finding seed lines that hit performance targets
- Demand high quality nursery stock

Seedling-Type Plants

Hazelnut seedlings are, quite simply, plants grown from seed. Check out our Grower Guide and Plants pages to learn more about the different types of seedlings and the pros and cons of growing seedlings vs cultivars. Our nursery partners produce these seedlings and ship direct. Once your order is received we will contact you about delivery/pick-up. Delivery fees are charged separately.

Parentage, breeding, and provenance information is included with each plant in a four part code: Breeder-Parents-Breeding ID-Provenance.

Breeder: Name of the breeder

Parent code: FS=full-sibling, HS=half-sibling, OP=mix of seedlings with unknown parentage

Breeding ID: A breeding ID is a unique identifier provided by the breeder and is only included with FS and HS plants

Provenance: The geographic location of the seed source

BUYER BEWARE: Seedling-type hazelnuts are grown from seed, which means it's impossible to predict with 100% accuracy how any given seedling-type plant will perform. Expect variable yields, kernel quality, disease resistance, maturities, and plant size.

Seedling-Type Plants Coming Soon